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Abstract—Sleep-wake scheduling is an effective mechanism
to prolong the lifetime of energy-constrained wireless sensor
networks. However, it incurs an additional delay for packet
delivery when each node needs to wait for its next-hop relay
node to wake up, which could be unacceptable for delay-sensitive
applications. Prior work in the literature has proposed to reduce
this delay using anycast, where each node opportunistically
selects the first neighboring node that wakes up among multiple
candidate nodes. In this paper, we study the joint control problem
of how to optimally control the sleep-wake schedule, the anycast
candidate set of next-hop neighbors, and anycast priorities, to
maximize the network lifetime subject to a constraint on the
expected end-to-end delay. We provide an efficient solution to this
joint control problem. Our numerical results indicate that the
proposed solution can substantially outperform prior heuristic
solutions in the literature, especially under the practical scenarios
where there are obstructions in the coverage area of the wireless
sensor network.

Index Terms—Anycast, Sleep-wake scheduling, Sensor net-
work, Energy-efficiency, Delay

I. INTRODUCTION

Sleep-wake scheduling is an effective mechanism to prolong
the lifetime of energy-constrained sensor networks. In this
paper, we are particularly interested in event-driven wireless
sensor networks, where events occur occasionally. Therefore,
by putting nodes to sleep when there are no events, the energy
consumption of the sensor nodes can be significantly reduced.

In the literature, synchronized sleep-wake scheduling pro-
tocols have been proposed in [1]–[3]. In these protocols,
sensor nodes periodically or aperiodically exchange synchro-
nization information with neighboring nodes. However, these
synchronous protocols could incur additional communication
overhead, and consume a considerable amount of energy.
In this work, we are interested in asynchronous sleep-wake
scheduling protocols such as those proposed in [4], [5]. In
these protocols, the sleep-wake schedule at each node is inde-
pendent of that of other nodes, and thus no synchronization is
required. However, due to the lack of knowledge of the sleep-
wake schedule of other nodes, it incurs additional delays for
packet delivery when each node needs to wait for its next-hop
node to wake up. This delay could be unacceptable for delay-
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sensitive applications, such as fire detection or tsunami alarm,
which require that the event reporting delay be small.

Prior work in the literature has proposed the use of anycast
to reduce this event reporting delay [6]–[10]. In contrast to
traditional sleep-wake scheduling, where each sending node
wakes up a particular next-hop relay node, in anycast each
sending node tries to wake up a group of neighboring nodes
in a candidate set, and the sending node then picks the first
node that wakes up to relay packets. Roughly speaking, if each
neighboring node wakes up once every T time, by selecting a
candidate set of n nodes, the time needed before the first node
wakes up is on average around T

n (assuming that the sleep-
wake schedules of the n nodes are independent). Thus, the
delay to wake up the next-hop neighbors can be significantly
reduced. On the other hand, the end-to-end delay not only
depends on the per-hop delay, but also the end-to-end path
that packet traverses. Hence, the set of candidate nodes must
be carefully chosen because it will also affect the possible
routing paths.

The existing anycast schemes in the literature have mainly
focused on the so-called “MAC-layer anycast” problem, i.e.,
they try to find the candidate set at each node such that some
local measure of delay is minimized. For the routing path,
they either use a separate routing algorithm [8], [9], or rely on
geographical information [6], [7], [10]. Thus, the interactions
between the choice of the candidate set and the routing path
was not systematically studied, and it is then unclear whether
such approaches will minimize the actual end-to-end delay. In
this paper, we directly optimize the system with respect to the
end-to-end delay. In particular, we formulate the joint control
problem of how to optimally control the sleep-wake schedule,
the anycast candidate set of neighboring nodes, and anycast
priorities among neighboring nodes, to maximize the network
lifetime subject to a constraint on the end-to-end delay. We
provide an efficient solution to this joint control problem, and
as a part of solution, we also show how to optimally choose
the candidate set in order to minimize the end-to-end delay
for all nodes.

The rest of this paper is organized as follows. In Section
II, we describe the system model and introduce the lifetime-
maximization problem that we intend to solve. In Section
III, we analyze the end-to-end delay under anycast, and we
develop an optimal distributed anycast algorithm that mini-
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mizes the end-to-end delay of all nodes. In Section IV, we
solve the lifetime-maximization problem. In Section V, we
provide simulation results that illustrate the performance of
our proposed algorithm compared to other heuristic algorithms
in the literature.

II. SYSTEM MODEL

We consider a wireless sensor network with N nodes. Let
N denote the set of all nodes in the network. Each sensor node
is in charge of both detecting events and relaying packets. If
a node detects an event, the node packs the event information
into a packet, and delivers the packet to a sink s via multi-
hop relaying. We assume in this paper that there is a single
sink, however, the analysis can be generalized to the case with
multiple sinks.

We assume that the sensor network employs sleep-wake
scheduling to improve energy-efficiency and to prolong the
network lifetime. With sleep-wake scheduling, nodes sleep
for most of the time and occasionally wake up for a short
period of time tactive. When a node i has a packet for node
j to relay, it will send a beacon signal followed by an ID
signal (carrying sender information). Let tB and tC be the
duration of the beacon signal and the ID signal, respectively.
When node j wakes up and senses a beacon signal, it keeps
awake, waiting for the following ID signal to recognize the
sender. When node j wakes up in the middle of an ID signal,
it keeps awake, waiting for the next ID signal. If node j
successfully recognizes the sender, and it is the next-hop node
of node i, it then communicates with node i to receive the
packet. If a node wakes up and does not sense any beacon
signal or any ID signal, it will then go back to sleep. In
this paper, we assume that the time instants that a node j
wakes up follow a Poisson random process with rate λj . We
also assume that the wake-up processes of different nodes
are independent. The independence assumption is suitable for
the scenario where nodes do not synchronize their wake-
up times, which is easier to implement than other schemes
that require global synchronization [1]–[3]. The advantage of
Poisson sleep-wake scheduling is that, due to its memoryless
property, sensor nodes are able to use a time-invariant optimal
policy to maximize the network lifetime (see the discussion
in Section III-B). While the analysis in this paper focuses on
the case when the wake-up times follow a Poisson process, we
expect that the methodology in the paper can also be extended
to the case with non-Poisson wake-up processes, with more
technically-involved analysis.

A well-known problem of using sleep-wake scheduling in
sensor networks is the additional delay incurred when a node
has to wait for its next-hop node to wake up. To reduce this
delay, we use an anycast forwarding scheme described in Fig.
1. Let Ci denote the set of nodes in the transmission range
of node i. Suppose that node i has a packet, and it needs
to pick up a node in Ci to relay the packet. Each node i
maintains a list of nodes that node i intends to use as a
forwarder. We call the set of such nodes a forwarding set,
which is denoted by Fi. In addition, each node j is also

assumed to maintain a list of nodes i that use node j as a
forwarder (i.e., j ∈ Fi). As shown in Fig. 1, node i starts
sending a beacon signal and an ID signal, successively. All
nodes in Ci hear these signals regardless of whom these signals
are intended for. A node j that wakes up during the beacon
signal or the ID signal will check if it is in the forwarding
set of node i. If it is, node j sends one acknowledgement
after the ID signal ends. After each ID signal, node i checks
whether there is any acknowledgement from nodes in Fi. If
no acknowledgement is detected, node i repeats the beacon-
ID-signaling and acknowledgement-detection processes until it
hears one. On the other hand, if there is an acknowledgement,
it may take some additional time for node i to identify which
node acknowledges the beacon-ID signals, especially when
there are multiple nodes that wake up at the same time. We
let tR denote the resolution period, during which time node
i identifies which nodes have sent acknowledgements, and,
if there are multiple awake nodes, chooses one node among
them that will forward the packet. After the resolution period,
the chosen node receives the packet from node i during the
packet transmission period tP , and then starts the beacon-
ID-signaling and acknowledgement-detection processes to find
the next forwarder. Since nodes consume energy when awake,
tactive should be as small as possible. However, tactive has to
be larger than tA because otherwise a neighboring node could
wake up after an ID signal and could turn to sleep before the
next beacon signal. In this paper, we set tactive = tA + tC
so that the node that wakes up right before the first beacon
signal also has the same chance of detecting the beacon signal
as nodes that wake up between two beacon signals.

A. Sleep-wake Schedule, Forwarding Set, and Priority
In this model, there are three control variables that affect

the network lifetime and the end-to-end delay experienced by
a packet.

1) Sleep-Wake Schedule: The sleep-wake schedule is
determined by the rate λj of the Poisson process with which
each node j wakes up. If λj increases, the expected one-hop
delay will decrease, and so will the end-to-end delay of any
routing paths that pass though node j. However, it leads to
higher energy consumption at node j so that the network
lifetime may decrease. In the rest of the paper, it is more
convenient to work with the notion of awake probability which
is a function of λj .

Suppose that node i sends the first beacon signal at time 0,
as in Fig. 1. If no nodes in Fi have heard the first m−1 beacon
and ID signals, then node i transmits the m-th beacon and ID

Fig. 1. System Model



signals in the time-interval [(tB + tC + tA)(m−1), (tB + tC +
tA)(m−1)+tB +tC ]. For a neighboring node j to hear the m-
th signals and to recognize the sender, it should wake up during
[(tB + tC + tA)(m−1)− tA− tC , (tB + tC + tA)m− tA− tC ].
Therefore, provided that node i is sending the m-th signals, the
probability that node j ∈ Ci wakes up and hears these signals
is pj = 1− e−λj(tB+tC+tA). We call pj the awake probability
of node j. It should be noted that, due to the memoryless
property of a Poisson random process, pj is same for each
beacon-ID signaling iteration, m.

Note that there is a one-to-one mapping between the awake
probability pj and waking-up frequency λj . Hence, an awake
probability is also closely related to both delay and energy
consumption. Let "p = (pi, i ∈ N ) represent the global awake
probability vector.

2) Forwarding Set: The forwarding set Fi is the set
of candidate nodes chosen to forward a packet at node i.
In principle, the forwarding set should contain nodes that
can quickly deliver the packet to the sink. However, since
the end-to-end delay depends on the forwarding set of all
nodes, choosing the correct forwarding set is not easy. We
use a matrix A to represent the forwarding set of all nodes
collectively, as follows:

A = [aij , i = 1, ..., N, j = 1, ..., N ]

where aij = 1 if j is in node i’s forwarding set, and aij =
0 otherwise. We call this matrix A the forwarding matrix.
Reciprocally, we define Fi(A) as the forwarding set of node
i under forwarding matrix A, i.e., Fi(A) = {j ∈ Ci|aij = 1}.
We let A denote the set of all possible forwarding matrices.

With anycast, a forwarding matrix determines the paths
that packets can potentially traverse. Let g(A) be the di-
rected graph G(V, E(A)) with vertices V = N , and edges
E(A) = {(i, j)|j ∈ Fi(A)}. If there is a path in g(A) that
leads from node i to node j, we say that node i is connected
to node j. Otherwise, we call it disconnected to node j. For
convenience, we call a node that is ‘connected (disconnected)
to sink s’ simply as ‘connected (disconnected).’ An acyclic
path is the path which does not traverse any node more than
once. If g(A) has any cyclic path, we call it a cyclic graph,
otherwise we call it an acyclic graph.

3) Priority: When multiple nodes send an acknowledge-
ment after the same ID signal, the source node i needs to pick
one of them as a forwarder. We assume that node i assigns
priorities to all nodes in Ci, and will pick the node with the
highest priority among these nodes that wake up. Clearly, the
priority assignment will also affect the expected delay. We use
a matrix B to represent the global priority decision, as follows:

B = [bij , i = 1, ..., N, j = 1, ..., N ]

where bij ∈ {1, · · · , |Ci|} if j ∈ Ci, and bij = 0 otherwise.
This bij represents the priority of node j from the viewpoint
of node i. We call this matrix B the priority matrix. The
priority matrix B further satisfies bij1 #= bij2 for all distinct
nodes j1, j2 ∈ Ci. Among the awake nodes, the node j that
satisfies bij > bik for all the other nodes k will be chosen

as a forwarder. Note that even though only the nodes in a
forwarding set need priorities, we here assign priorities to
all nodes to make priority matrix B an independent control
variable from forwarding matrix A. We let B denote the set
of all possible priority matrices.

B. Performance Metrics
We next describe the performance metrics that we are

interested in.
1) End-to-End Delay: We assume that the end-to-end

delay for event delivery is dominated by the cumulative sum
of the delay for each hop to wake up and to relay a packet to
its next-hop neighbor. This is a reasonable approximation in
many event-driven networks. Note that when an event occurs
in an event-driven sensor network, the first packet generated by
the event usually suffers most of the delay because at every
hop it has to wait for nodes to wake up so that it can be
relayed. Once the first packet goes through, the sensor nodes
can stay awake for a while, hence the delay of the subsequent
packets are often much smaller. Therefore, in this paper, we
define the end-to-end delay as the delay incurred by the first
packet, which is the sum of the delay for each hop to wake
up and to relay the packet to its next-hop neighbor.

Given A, B, and "p, the stochastic process with which a
packet traverses the network from the source node to the sink
is completely specified, and can be described by a Markov
process. We define Di("p,A,B) as the expected end-to-end
delay for a packet from node i to reach sink s, when awake
probability vector "p, forwarding matrix A, and priority matrix
B are given. Since sink s is the destination of all packets,
the delay of packets from sink s is regarded as zero, i.e.,
Ds("p,A,B) = 0, regardless of "p, A, and B. If node i is
disconnected to sink s under forwarding matrix A, packets
from the node cannot reach sink s. Therefore, the end-to-
end delay from such a node i is regarded as infinite, i.e.,
Di("p,A,B) = ∞. From now on, we call ‘the expected end-
to-end delay from node i to sink s’ simply as ‘the delay from
node i’.

2) Network Lifetime: We assume that node i consumes
ui unit of energy each time it wakes up. Let Qi be the energy
available to node i. Then, the expected lifetime of node i is
Qi

uiλi
. By introducing the power consumption ratio ei = ui/Qi,

we can express the lifetime of node i as

Ti("p) =
1

eiλi
=

tB + tC + tA
ei ln 1

(1−pi)

. (1)

Here we have used the definition of the awake probability
pi = 1 − e−λj(tB+tC+tA) from (1). Note that in this def-
inition of lifetime we have chosen not to account for the
energy consumption by data transmission. This is a reasonable
approximation for those event-driven sensor networks where
events occur very rarely, in which case the energy consumption
of the sensor nodes is dominated by the energy consumed
during the sleep-wake scheduling.

We assume that the network lifetime is determined by the
shortest lifetime of all nodes. In other words, the network



lifetime for a given awake probability vector "p is given by
T ("p) = mini∈N Ti("p). The methodology of the paper may be
extended to handle other definitions of lifetime, e.g., when the
sensor network is considered operational if less than a certain
percentage of nodes are alive. However, we leave this more
general definition of lifetime for future work.

3) Problem Formulation: The objective of this paper is to
choose awake probability vector "p, forwarding matrix A, and
priority matrix B to maximize the network lifetime, subject to
the constraint that the expected delay from each node to sink
s is below the maximum allowable delay, i.e.,

(P) max
"p,A,B

T ("p)

subject to Di("p,A,B) ≤ ξ∗, ∀i ∈ N
"p ∈ (0, 1]N , A ∈ A, B ∈ B.

where ξ∗ is the maximum allowable delay.

III. MINIMIZATION OF END-TO-END DELAYS FOR GIVEN
AWAKE PROBABILITIES

In this section, we consider how each node should choose
its forwarding set and assign priorities to neighboring nodes to
minimize the delay Di("p,A,B), when the awake probabilities
are given. Then, in Section IV, we relax the fixed-probability
assumption to solve problem (P).

A. Local Delay Relationship

We first derive a recursive relationship for the delay,
Di("p,A,B). When node i has a packet, the probability Pj,h

that node j in Ci becomes a forwarder right after the h-th
beacon-ID signals is equal to the probability that no nodes
in Ci have woken up for the past h − 1 beacon-ID-signaling
iterations, and node j wakes up at the h-th beacon-ID signals
while all nodes with a higher priority than node j remain
sleeping at the h-th iteration, i.e.,

Pj,h =




∏

k∈Fi(A)

(1− pk)




h−1

pj

∏

k∈Fi(A):bij<bik

(1− pk).

Conditioned on this event, the expected delay from node i to
sink s is given by (tB + tC + tA)h + tR + tP + Dj("p,A,B).
For ease of notation, we define the iteration period tI ! tB +
tC + tA and the data transmission period tD ! tR + tP . We
can then calculate the expected delay Di("p,A,B) of node i
for given awake probability vector "p, forwarding matrix A,
and priority matrix B as follows:

Di("p,A,B)

=
∞∑

h=1

∑

j∈Fi(A)

[(tIh + tD + Dj("p,A,B))Pj,h]

= tD +
tI

1−
∏

j∈Fi(A)

(1− pj)

+

∑

j∈Fi(A)

Dj("p,A,B)pj

∏

k∈Fi(A):bij<bik

(1− pk)

1−
∏

j∈Fi(A)

(1− pj)
.(2)

We call (2) the local delay relationship, which must hold
for all nodes i except the sink s. (Recall Ds("p,A,B) = 0
regardless of the delay of neighboring nodes.)

B. The Optimal Forwarding Set and Priority Assignment
In this subsection, we first consider the hypothetical scenario

where a node i knows the delays Dj from its neighboring
nodes j to sink s, and such delays Dj are fixed. Under
this hypothesis, we will study how node i should adjust its
own forwarding set and priority assignment to minimize the
expected delay from node i to sink s. Then, in the next
subsection, we will use the insight from the result to determine
the optimal forwarding matrix A, and priority matrix B.

Consider that a node i has multiple neighboring nodes with
fixed delay. Similar to (2), we can calculate the expected delay
from node i to sink s for a given neighboring delay vector
"πi = (Dj , j ∈ Ci), forwarding set Fi, and priority assignment
"bi as

f("πi,Fi,"bi)

! tD +
tI +

∑
j∈Fi

Djpj
∏

k∈Fi:bij<bik
(1− pk)

1−
∏

j∈Fi
(1− pj)

. (3)

We call the function f(·, ·, ·) the local delay function.
We first show that, in order to minimize f(·, ·, ·), the optimal

priority assignment "b∗i can be completely determined by the
neighboring delay vector "πi.

Proposition 1: Let "b∗i be the priority assignment that gives
higher priorities to neighboring nodes with smaller delay, i.e.,
for each pair of nodes j and k satisfying b∗ij < b∗ik, the
inequality Dk ≤ Dj holds. Then, for any given Fi,

f("πi,Fi,"b
∗
i ) ≤ f("πi,Fi,"bi) (4)

for all possible "bi.
The detailed proof is provided in Appendix A in our on-line
technical report [11]. The intuition behind Proposition 1 is that
when multiple nodes sends acknowledgements, selecting the
node with the smallest delay should minimize the expected
delay. Therefore, priorities must be assigned to neighboring
nodes according to their (known) delays Dj , independent of
awake probabilities and forwarding sets. In the sequel, we
use b∗i ("πi) to denote the optimal priority assignment for given



neighboring delay vector "πi, i.e., for all nodes j and k in Ci,
if b∗ij("πi) < b∗ik("πi), then Dk ≤ Dj . For ease of notation, we
define the value of the local delay function with this optimal
priority assignment as f̂("πi,Fi) ! f("πi,Fi,"b∗i ("πi)).

The following properties characterize the structure of the
optimal forwarding set.

Proposition 2: For a given "πi, let J1, J2, and J3 be
mutually disjoint subsets of Ci satisfying b∗ij2("πi) < b∗ij1("πi)
for all nodes j1 ∈ Jk and j2 ∈ Jk+1 (k = 1, 2). Let

DJk =

∑
j∈Jk

Djpj
∏

k∈Jk:b∗ij("πi)<b∗ik("πi)
(1− pk)

1−
∏

j∈Jk
(1− pj)

,

denote the weighted average delay in Jk for k = 1, 2, 3. Then,
the following properties related to f̂("πi, ·) hold
(a) f̂("πi,J1 ∪J3) < f̂("πi,J1) ⇔ DJ3 + tD < f̂("πi,J1) ⇔

DJ3 + tD < f̂("πi,J1 ∪ J3).
(b) f̂("πi,J1 ∪J3) = f̂("πi,J1) ⇔ DJ3 + tD = f̂("πi,J1) ⇔

DJ3 + tD = f̂("πi,J1 ∪ J3).
(c) If f̂("πi,J1∪J3) < f̂("πi,J1), then f̂("πi,J1∪J2∪J3) <

f̂("πi,J1 ∪ J3).
(d) If f̂("πi,J1∪J3) = f̂("πi,J1), then f̂("πi,J1∪J2∪J3) ≤

f̂("πi,J1 ∪J3), and the equality holds only when Dj2 =
Dj3 for all j2 ∈ J2 and j3 ∈ J3.
Proof: This proposition can be shown by noting that each

node set Jk (k = 1, 2, 3) can be regarded as a node with delay
DJk and awake probability PJk = 1 −

∏
j∈Jk

(1 − pj), i.e.,
the probability that any node in Jk wakes up. Then, the local
delay function can be expressed as

f̂("πi,∪K
k=1Jk) = tD +

tI +
∑K

k=1 DJkPJk

∏k−1
l=1 (1− PJl)

1−
∏K

k=1(1− PJk)

for K = 1, 2, 3. Then, by algebraic manipulation, we can
establish Properties (a)-(d). Details are again available in
Appendix B in [11].

The interpretation of Proposition 2 is straightforward. For
example, Property (a) implies that adding lower priority nodes
of J3 into the current forwarding set Fi = J1 decreases the
delay if and only if the weighted average delay in J3 plus tD
is smaller than the current delay.

Using Proposition 2, we can obtain the following main
result.

Proposition 3: Let F∗i = arg minFi⊂Ci
f̂("πi,Fi). Then,

F∗i has the following structural properties.
(a) F∗i must contain all nodes j in Ci that satisfy Dj <

f̂("πi,F∗i )− tD.
(b) F∗i cannot contain any nodes j in Ci that satisfy Dj >

f̂("πi,F∗i )− tD.
(c) For all nodes j in Ci that satisfy Dj = f̂("πi,F∗i ) − tD,

the following relationship holds,

f̂("πi,F∗i ) = f̂("πi,F∗i \ {j}) = f̂("πi,F∗i ∪ {j}).

We can prove Proposition 3 by using the result of Proposition
2. (See the detail provided in Appendix C in [11].)

From Proportion 3, we can characterize the optimal forward-
ing set as F∗i = {j ∈ Ci|Dj < f̂("πi,F∗i ) − tD} ∪G , where

G is a subset of {j ∈ Ci|Dj = f̂("πi,F∗i ) − tD}. This means
that if there exists a node j such that Dj = f̂("πi,F∗i ) − tD,
F∗i is not unique. In other words, if such a node j wakes up
first, there is no difference in the overall delay whether node
i transmits a packet to this node or waits for the other nodes
in F∗i to wake up.

Since the optimal forwarding set consists of nodes whose
delay is smaller than or equal to some threshold value,
the simplest solution to find the optimal forwarding sets is
to run an exhaustive search from the highest priority, i.e.,
k = |Ci|, to the lowest priority, i.e., k = 1, to find the k that
minimizes f̂("πi,Fi,k) where Fi,k = {j ∈ Ci|b∗ij("πi) ≥ k}.
If there are multiple optimal forwarding sets, we only need
to find one of them. In this paper, we chose to use the
set F∗i = {j ∈ Ci|Dj < f̂("πi,F∗i ) − tD} as the optimal
forwarding set because it is the first one that we can obtain
in the exhaustive search. Therefore, we redefine the optimal
forwarding set F∗i as the forwarding set that satisfies both
F∗i = arg minFi⊂Ci

f̂("πi,Fi) and F∗i = {j ∈ Ci|Dj <
f̂("πi,F∗i ) − tD}. Note that with this definition, the optimal
forwarding set is unique. Then, the following lemma helps us
to find the optimal forwarding set more quickly.

Lemma 1: For all F ⊂C i that satisfies F = {j ∈ Ci|Dj <
f̂("πi,F)− tD}, F∗i ⊂ F .

Proof: From Proposition 3 (a) and the definition of F∗i , all
nodes k ∈ F∗i satisfy Dk < f̂(πi,F∗i )− tD ≤ f̂(πi,Fi)− tD,
for any subset Fi ⊂ Ci. Since F ⊂C i, we obtain Dk <
f̂(πi,F)− tD for all nodes k ∈ F∗

i . Hence, F∗i ⊂ F .
Lemma 1 implies that when we exhaustively search for the

optimal forwarding set from k = |Ci| to k = 1, we can
stop searching if we find the first (largest) k such that for
all nodes j ∈ Fi,k, Dj < f̂("πi,Fi,k)− tD, and for all nodes
l /∈ Fi,k, Dl ≥ f̂("πi,Fi,k)− tD. Since all neighboring nodes
are prioritized by their delays, we do not need to compare
the delays of all neighboring node with the threshold value.
Hence, the stopping condition can be further simplified as
follows: node i searches the largest k such that for node j
with b∗ij("πi) = k, Dj < f̂("πi,Fi,k)− tD, and for node l with
b∗il("πi) = k − 1, Dl ≥ f̂("πi,Fi,k)− tD.

It should be noted that the optimal forwarding set is time-
invariant due to the memoryless property of a Poisson random
process. Specifically, the expected time for each node j in Ci

to wake up is always the same as tI/pj regardless of how
long the source node have waited. Therefore, the strategy to
minimize the expected delay is also time-invariant.

C. Globally Optimal Forwarding and Priority Matrices
We next use the insight of Section III-B to develop an algo-

rithm computing the globally optimal forwarding and priority
matrices for given "p. This algorithm has the flavor of the
distributed Bellman-Ford’s algorithm for finding the shortest
paths. At each iteration, each node uses the delay estimates
from the previous iteration to update the forwarding set and the
priority assignment. We will show that the algorithm converges
in N iterations, and the resulting A and B minimize the
expected delay Di("p,A,B).



The algorithm is presented next.
The OPT-DELAY Algorithm
Step (1) At iteration 0, each node i sets

D(0)
i =

{
0 if i = s,
∞ otherwise.

and F (0)
i = ∅. Each node arbitrarily assigns priorities to

neighboring nodes.
Step (2) At iteration h (≥ 1), each node i sets "b(h)

i =
"b∗i ("π

(h−1)
i ), where "π(h−1)

i = (D(h−1)
j , j ∈ Ci).

Step (3) Each node i updates F (h)
i by finding the optimal

forwarding set for "π(h−1)
i and also updates D(h)

i as follows

D(h)
i = f̂("π(h−1)

i ,F (h)
i ). (5)

Step (4) If D(h)
i = D(h−1)

i for all nodes i ∈ N , this algorithm
terminates. Otherwise, each node increases h by one and goes
back to Step (2).

To analyze the OPT-DELAY algorithm, we will use the
following notations. We define the subgraph gi(A) =
G(Vi(A), Ei(A)) as the graph with vertices Vi(A) =
{j ∈ V (A)| i is connected to j in g(A)} and edges Ei(A) =
{(j, k) ∈ E(A)|{j, k} ⊂ Vi(A)}. By convention, node i
is connected to itself, i.e., i ∈ Vi(A) for all A ∈ A.
This subgraph gi(A) shows all possible paths from node i
under forwarding matrix A. For any forwarding matrix A, the
number of distinct acyclic paths in g(A) is finite when the total
number of nodes is finite. Let |g(A)| be the maximum length
of acyclic paths in g(A). Then, the following proposition
states an important property for analyzing the OPT-DELAY
algorithm.

Proposition 4: For any "p, A ∈ A, and B ∈ B such that
gi(A) is cyclic, there exist A′ ∈ A and B′ ∈ B such that
gi(A′) is acyclic, |gi(A′)| ≤| gi(A)|, and

Di("p,A′,B′) ≤ Di("p,A,B).

The detailed proof is provided in Appendix D in [11]. Propo-
sition 4 implies that for any forwarding and priority matrices
that cause a cyclic path from any node i to sink s, there always
exist other forwarding and priority matrices with which all
paths from node i to sink s are acyclic, and the delay from
node i with the new matrices is equal to or smaller than
the delay with the original matrices. This is intuitively true
because it will incur higher delay if the packets have to traverse
loops.

Let A(h) be the forwarding matrix that corresponds to F (h)
i

for all nodes i ∈ N , i.e., a(h)
ij = 1 if j ∈ F (h)

i , or a(h)
ij = 0,

otherwise. Similarly, let B(h) be the priority matrix in which
the transpose of the i-th row is "b(h)

i . Let A∗("p) and B∗("p) be
the forwarding and priority matrices when the OPT-DELAY
algorithm converges. (Note that "p is fixed and given.)

The following proposition provides the key properties of the
algorithm.

Proposition 5: The algorithm has the following properties:
1) At iteration h, g(A(h)) is an acyclic graph.

2) The OPT-DELAY algorithm converges within N itera-
tions.

3) For given "p, (A∗("p),B∗("p)) = arg minA,B Di("p,A,B)
for all nodes i ∈ N .

Proof: In this paper, we show the basic ideas of the proof.
The detailed version of proof is provided in Appendix E in
[11].

We first show that D(h+1)
i ≤ D(h)

i for h ≥ 1 and all
nodes i. Suppose in contrary that there exists node i such
that D(h)

i < D(h+1)
i . Then, from [11], we can show that

there must exist node i1 ∈ Ci such that D(h−1)
i1

< D(h)
i1

.
Repeating this procedure, we can find a sequence of nodes
i2, · · · , ik, · · · , ih−1 such that ik ∈ Cik−1 and D(h−k)

ik
<

D(h−k+1)
ik

. For node ih−1, D(1)
ih−1

< D(2)
ih−1

. However, if
sink s is in ih−1’s transmission range, i.e., s ∈ Cih−1 , then
D(k)

ih−1
= D(1)

ih−1
= tD + tI/ps at any iteration k, because node

ih−1 can deliver the packet directly to sink s. If sink s is not
in Cih−1 , D(2)

ih−1
≤ D(1)

ih−1
= ∞. This leads to a contradiction.

Thus, D(h+1)
i ≤ D(h)

i for all nodes i ∈ N and iteration h > 1.
We now prove the first property. Suppose in contrary that

there is a cyclic path in g(A(h)). Let the sequence of nodes
along this cyclic path be i1, i2, · · · , iK , and iK+1 = i1, i.e.,
ik+1 ∈ F (h)

ik
for k = 1, 2, ...,K. Then, from [11], we can

show that the delays along the cyclic path satisfy

D(h)
i1

> D(h)
i2

> · · · > D(h)
iK

> D(h)
i1

.

This is a contradiction. Therefore, g(A(h)) is an acyclic graph.
Let A(h)

i = {A ∈ A||gi(A)| ≤ h}. A(h)
i denotes the set

of forwarding matrices with which the maximum number of
hops along acyclic paths from node i to sink s is less than h.
We now show that

D(h)
i ≤ min

A∈A(h)
i ,B

Di("p,A,B). (6)

We prove by induction. At iteration 1, F (1)
i = {s} and D(1)

i =
tD+tI/ps if sink s ∈ Ci. Otherwise, F (1)

i = ∅ and D(1)
i = ∞.

Now consider the right-hand-side of (6). If A(1)
i is not an

empty set, this means that node i has a direct path to sink s,
which implies that its expected delay is tD + tI/ps. If A(1)

i
is an empty set, this means that there is no path for node i
to reach sink s within 1 hop, which implies that the expected
delay to reach sink s within 1 hop is infinite. Therefore, (6)
holds at iteration 1.

Next, assume that the induction hypothesis (6) holds at
iteration h, i.e.,

D(h)
i ≤ min

A∈A(h)
i ,B

Di("p,A,B) ∀i ∈ N . (7)

Then, using Proposition 4, we can show that (7) also holds at
iteration h+1. (See the detail in Appendix E in [11].) Hence,
(6) holds for all nodes.

We next prove that Di("p,A(h),B(h)) ≤ D(h)
i . At iteration

1, F (1)
i = {s} if s ∈ Ci. Otherwise, F (1)

i = ∅. Hence,

Di("p,A(1),B(1)) =
{

tD + tI/ps if s ∈ Ci,
∞ otherwise.



Thus, Di("p,A(1),B(1)) = D(1)
i for all nodes i, and so

Di("p,A(h),B(h)) ≤ D(h)
i holds at iteration 1.

Next assume that the induction hypothesis

Di("p,A(l),B(l)) ≤ D(l)
i ∀i ∈ N (8)

holds for all l ≤ h. Then, from [11], we can show that (8)
also holds for l = h + 1. Hence, Di("p,A(h),B(h)) ≤ D(h)

i
holds for all i and h.

From the previous results, we conclude that

Di("p,A(h),B(h)) ≤ D(h)
i ≤ min

A∈A(h)
i ,B

Di("p,A,B) (9)

The maximum length of an acyclic path is equal to or less than
N . Therefore, A(N)

i = A for all nodes i. Since A(h) ∈ A, at
iteration N , we obtain

Di("p,A(N),B(N)) = D(N)
i = min

A,B
Di("p,A,B)

from (9). Hence, the algorithm must converge in at most
N iterations, and A(h), B(h), and D(h)

i converge to the
optimal forwarding matrix, the optimal priority matrix, and the
minimum expected delay from node i to sink s, respectively.

Proposition 5 shows that there always exists (A, B) that
can minimize the delay from all nodes at the same time, and
(A("p),B("p)) corresponds to such a solution. Furthermore, the
graph g(A∗("p)) is acyclic. The complexity of this algorithm is
given by O(N). Moreover, this algorithm can be implemented
in a fully distributed fashion.

IV. SOLUTION TO THE LIFETIME-MAXIMIZATION
PROBLEM

In this section, we solve the original lifetime-maximization
problem (P), using the results in previous sections. By letting
qi = ln(1− pi)−ei , we can rewrite problem (P) as

(P1) max
"q,A,B

min
i∈N

tI
qi

,

subject to Di("p,A,B) ≤ ξ∗, ∀i ∈ N
pi = 1− e−qi/ei , ∀i ∈ N (10)
qi ∈ (0,∞), ∀i ∈ N
A ∈ A, B ∈ B.

Since for any given "p, A∗("p) and B∗("p) are the optimal
forwarding matrix and the optimal priority matrix, respec-
tively, that minimize the delay from all nodes, we have
Di("p,A∗("p),B∗("p)) ≤ Di("p,A,B) for all A and B. Hence,
we can rewrite problem (P1) as follows:

(P2) max
"q

min
i∈N

tI
qi

,

subject to Di("p,A∗("p),B∗("p)) ≤ ξ∗, ∀i ∈ N
pi = 1− e−qi/ei , ∀i ∈ N
qi ∈ (0,∞), ∀i ∈ N

Problem (P2) can be further simplified with the following
proposition.

Proposition 6: If "q ∗ is the optimal solution to problem
(P2), then so is "q such that "q = (qi = maxk q∗k, i ∈ N ),
i.e., we can let every node have the same qi.

Proof: Since both solutions have the same objective value,
it is sufficient to show that if "q ∗ is in the feasible set, so is "q.
Let "p∗ and "p be the awake probability vectors that correspond
to "q∗ and "q, respectively, by (10). Since pi is monotonically
increasing as qi increases, and "q ∗ - "q, we have "p ∗ - "p. (The
symbol ‘-’ denotes componentwise inequality, i.e., if "q - "p,
then qi ≤ pi for all i, where qi and pi are the i-th components
of "q and "p, respectively.)

Note that the delay Di("p,A∗("p),B∗("p)) from each node i
is a non-increasing function with respect to each component
of "p. (See Appendix F in [11].) Since "p ∗ - "p, for all nodes
i, we have Di("p,A∗("p),B∗("p)) ≤ Di("p ∗,A∗("p ∗),B∗("p ∗)).
Hence, if "q ∗ is in the feasible set, so is "q.

Using the above proposition, we can rewrite problem (P2)
into a problem with one variable q,

(P3) min q,

subject to max
i∈N

Di("p,A("p),B("p)) ≤ ξ∗

pi = 1− e−q/ei , ∀i ∈ N
q ∈ (0,∞).

If q∗ is the solution to problem (P3), then ("p∗,A("p∗),B("p∗))
(p∗i = 1− e−q∗/ei ) corresponds to the solution of the original
problem (P).

Note that maxi∈N Di("p,A("p),B("p)) is a non-increasing
function of pi. (See the proof of Proposition 6.) Since "p is an
increasing vector of q, the simplest solution to Problem (P3) is
to linearly search q such that maxi∈N Di("p,A("p),B("p)) = ξ∗

where pi = 1− e−q/ei .
We develop an efficient binary search algorithm for

computing the optimal value of q.
The Binary Search Algorithm for Problem (P3)
Step (1) Initially, sink s sets p(1) = 0.5 and k = 1.
Step (2) Sink s sets q(k) = ln(1− p(k))−maxi∈N ei .
Step (3) Nodes run the OPT-DELAY algorithm for given
"p(k) = (p(k)

i = 1− e−q(k)/ei , i ∈ N ).
Step (4) After N iterations, the optimal forwarding set and
the optimal priority assignment under "p (k) are found. Nodes
j that are not in the other node’s forwarding set, i.e., j /∈
F∗i (A∗("p(k))) for all nodes i, send feedback of their delays
Dj("p(k),A∗("p(k)),B∗("p(k))) to sink s.
Step (5) Let Dmax be the maximum feedback delay arrived
at sink s.

• If Dmax > ξ∗+ε, then sink s sets p(k+1) = p(k)+0.5k+1,
increases k by one, and goes back to Step (2).

• If Dmax < ξ∗−ε, then sink s sets p(k+1) = p(k)−0.5k+1,
increases k by one, and goes back to Step (2).

• If Dmax ∈ [ξ∗− ε,ξ ∗+ ε], then the algorithm terminates,
and returns q(k) as the optimal solution to Problem (P3).

The reason that we take q(k) with respect to the maximum
ei in Step (2) is because this makes all p(k)

i less than or
equal to p(k). (Note that we only search p(k) over (0, 1].) In



Step (4), only such a node j that does not belong to any
other forwarding set needs to send the feedback delay to the
sink s because the node with the maximum delay does not
belong to any other forwarding set according to Property (a) in
Proposition 3. Since sink s only needs to know the maximum
delay, there is no need for the other nodes to feedback their
delays.

V. SIMULATION RESULTS

In this section, we provide simulation results to illustrate the
performance advantage of our optimal anycast algorithm. We
simulate a wireless sensor network with 400 nodes deployed
randomly over a 10-by-10 area with uniform distribution, and
the sink s is located at (0, 0). We assume that the transmission
range from each node i is a disc with radius 1.5, i.e., j ∈ Ci,
if the distance between node j and node i is less than 1.5.
The parameters tI and tD are set to 1 and 5, respectively. We
also assume that power consumption ratio ei is identical for
all nodes i.

A. Existing Algorithms Proposed in the Literature
In this subsection, we review some existing algorithms that

we will compare with our optimal algorithm.
Normalized-latency Anycast Algorithm: The normalized-

latency algorithm proposed in [10] is an anycast-based heuris-
tic that exploits geographic information to reduce the delay
from each node. Let di be the distance from node i to sink
s, and let rij be the progress from node i to node j toward
sink s, i.e., rij = di − dj . If a node has a packet, let D be
the one-hop delay from node i to a next-hop node, and let
R be the progress between two nodes. Since node i selects
the next-hop node probabilistically, both D and R are random
variables. The objective of the normalized latency algorithm
is to find the forwarding set that minimizes the expectation
of normalized one-hop delay, i.e., E[D

R ]. The idea behind this
algorithm is to minimize the expected delay per unit distance,
which might help to reduce the actual end-to-end delay.

Naive Anycast Algorithm: The naive algorithm proposed
in [10] is also an anycast-based heuristic algorithm that
exploits geographic information. Under this algorithm, each
node includes all neighboring nodes with positive progress in
the forwarding set.

Deterministic Routing Algorithm: By deterministic rout-
ing, we mean that each node has only one designated next-
hop forwarding node. Therefore, deterministic routing can be
viewed as a special case of anycast, in which the size of
the forwarding set at each node is restricted to one. There-
fore, instead of finding the optimal forwarding set F (h)

i =
arg minF⊂Ci

f̂("π(h−1)
i ,F) in Step (3) of the OPT-DELAY

algorithm, we update F (h)
i according to

F (h)
i = arg min

F⊂Ci:|F|=1
f̂("π(h−1)

i ,F), . (11)

After the above modification, the OPT-DELAY algorithm be-
comes one that finds the optimal next hop under deterministic
routing. Note that this modified algorithm is equivalent to the

well-known Bellman-Ford shortest path algorithm, in which
the length of each link (i, j) is given by tI/pj +tD. Let Di("p)
denote the minimum delay from node i under deterministic
routing. Then, D(h)

i under the modified algorithm converges
to Di("p).

In this simulation, in order to compare the network lifetime
under the different algorithms, we run the binary search algo-
rithm for Problem (P3), replacing the OPT-DELAY algorithm
in Step (3) with the above mentioned algorithms.

B. Performance Comparison

In Fig. 2, we compare the network lifetime under the
different algorithms, where x-axis represents different max-
imum allowable delays ξ∗ in our original Problem (P), and y-
axis represents the maximum lifetime for each ξ∗. The curve
labeled ‘Anycast (optimal)’ represents the lifetime under the
optimal anycast algorithm, i.e., the OPT-DELAY algorithm.
The curves labeled ‘Anycast (norm)’ and ‘Anycast (naive)’
represent the lifetime under the normalized-latency anycast
algorithm, and under the naive anycast algorithm, respectively.
The curve labeled ‘Deterministic routing’ represents the life-
time under the deterministic routing algorithm.
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Fig. 2. The network lifetime according to different allowable delay ξ∗ when
nodes are uniformly deployed.

From Fig. 2, we observe that all anycast algorithms sig-
nificantly extend the lifetime compared to the deterministic
routing algorithm. We also observe that the performance of
the optimal and the normalized-latency algorithm is very close.
Note that the normalized-latency algorithm gives preference to
nodes with larger progress, while our optimal algorithm gives
preference to nodes with smaller delays. The results in Fig. 2
seem to suggest that there is a correlation between progress
and delay when nodes are deployed uniformly. Finally, the
reason for the performance gap between the optimal and the
naive algorithms is that transmitting a packet to a neighbor
with small progress is often not a good decision if a node
with higher progress is expected to wake up soon.

We next simulate a topology where there is a hole in the
sensor field as shown in Fig. 3. This is motivated by practical
scenarios, where there are obstructions in the sensor field, e.g.,



a lake or a mountain where sensor nodes cannot be deployed.
The simulation result based on this topology is provided in
Fig. 4.
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Fig. 3. Node deployment and routing paths under different forwarding
algorithms when pi = 0.5: The dotted lines illustrate all routing paths under
the optimal anycast algorithm, the thick solid lines illustrate the unique routing
path under the deterministic routing path, and thin solid lines illustrate all
routing paths under the normalized-latency anycast algorithm
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Fig. 4. The network lifetime according to different allowable delay ξ∗ when
nodes are not uniformly distributed.

From this figure, we observe that the optimal anycast algo-
rithm substantially outperforms the other algorithms including
the normalized-latency anycast algorithm. Fig 3 provides us
with the intuition for this performance gap. We plot the routing
paths from the nodes with the largest delay. The dotted lines
(above the hole) illustrate all routing paths under the optimal
anycast algorithm. The thick solid lines (above the hole) illus-
trate the unique routing path under the deterministic routing
algorithm. The thin solid lines (above the hole) illustrate all
routing paths under the normalized-latency anycast algorithm.
The routing paths under the naive anycast algorithm are omit-
ted because they are similar to those under the normalized-
latency anycast algorithm. In our optimal algorithm, in order
to reduce the delay, a packet is first forwarded to neighbors
with negative progress but smaller delay. However, under the

normalized-latency algorithm, all packet are forwarded only
to nodes with positive progress, and hence they take longer
detours. Therefore, the result of Fig 3 shows that when the
node distribution is not uniform, there may not be a strong
correlation between progress and delay. Thus, the anycast-
based heuristic algorithms depending only on geographical
information could perform poorly.

VI. CONCLUSION

In this paper, we study how to use anycast to reduce the
end-to-end delay and to prolong the lifetime of wireless sensor
networks employing asynchronous sleep-wake scheduling. In
particular, we study the joint control problem of how to opti-
mally control the sleep-wake schedule, the anycast candidate
set of next-hop neighbors, and the anycast priorities, in order
to maximize the network lifetime subject to a upper limit on
the expected end-to-end delay. We provide an efficient solution
to this joint control problem, and as a part of the solution, we
also show how to optimally choose the anycast candidate set
to minimize the end-to-end delay from all sensor nodes. Our
numerical results suggest that the proposed solution can sub-
stantially outperform prior heuristic solutions in the literature
under practical scenarios where there are obstructions in the
coverage area of the wireless sensor network.

The algorithms that we have developed can be easily applied
to energy-constrained event-driven wireless sensor networks.
In future work, we plan to extend the result to the case with
non-Poisson sleep-wake patterns, and to handle more general
notions of network lifetime.
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